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Figure 3: The diphoton invariant mass distribution with each event weighted by the S/(S+ B)
value of its category. The lines represent the fitted background and signal, and the coloured

bands represent the ±1 and ±2 standard deviation uncertainties in the background estimate.

The inset shows the central part of the unweighted invariant mass distribution.
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mH=125

... so lets not get carried away
from AM, USQCD 5/4/12
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basic idea: Higgs doublet (2, 1/2) is a pNGB .. that is 
why it is lighter than other new physics 

at some high scale: f

G → G’ + NGBs from some new strong dynamics

unbroken group G’ contains SU(2)⊗ U(1)

NGBs contain a doublet H of EWS:

Composite Higgs

 NGB come in reps. of G’, arrange such that 
G

G� ⊃ H(2,
1

2
)

just as m2π ≪  m2ρ
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basic idea: Higgs doublet (2, 1/2) is a pNGB .. that is 
why it is lighter than other new physics 

at some high scale: f

G → G’ + NGBs from some new strong dynamics

unbroken group G’ contains SU(2)⊗ U(1)

NGBs contain a doublet H of EWS:

Composite Higgs

 NGB come in reps. of G’, arrange such that 
G

G� ⊃ H(2,
1

2
)

just as m2π ≪  m2ρ

lattice!
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V(H) 
at tree-level: 

         loop-level: 

 →  EWSB

- need v ≠ 0, but also v ≪ f

-

new scale generated

EWS unbroken

V(H) 

 induced by interactions 
that explicitly break G
 (gauge, Yukawa)

v �= 0

m2
H

=
d2V (h)

d2h

���
h=v

Higgs mass also needs to be small

Composite Higgs
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SO(5)
SO(4)

phenomenologically, G’ ⊃ SU(2)⊗ SU(2) ≅ SO(4) works 
better than just SU(2) ⊗ U(1)... (T parameter)

assemble: Σ = exp
�2iχaT a

f

� broken generator

strong scale NGB

Σ0 symmetry-
breaking ‘vev’

10 generators → 6 generators
= 4 broken generators = 4 NGB : just enough!

start writing terms with Σ, DμΣ ...

Composite Higgs in action
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 use SU(3)/(SU(2)⊗U(1)) as an explicit example:

Σex = exp
i

f




χ4 − iχ5

χ6 − iχ7

χ4 + iχ5 χ6 + iχ7





� �


0
0
1





Σ0

Composite Higgs in action
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SU(2)⊗ U(1) correspond to these (unbroken) generators

 use SU(3)/(SU(2)⊗U(1)) as an explicit example:

Σex = exp
i

f




χ4 − iχ5

χ6 − iχ7

χ4 + iχ5 χ6 + iχ7





� �


0
0
1





Σ0

Composite Higgs in action
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NGB come with broken generators. 

The set of 4: χ₄,₅,₆,₇  form a doublet under the SU(2)w ⊗ U(1)Y

SU(2)⊗ U(1) correspond to these (unbroken) generators

 use SU(3)/(SU(2)⊗U(1)) as an explicit example:

Σex = exp
i

f




χ4 − iχ5

χ6 − iχ7

χ4 + iχ5 χ6 + iχ7





� �


0
0
1





Σ0

Composite Higgs in action
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NGB come with broken generators. 

The set of 4: χ₄,₅,₆,₇  form a doublet under the SU(2)w ⊗ U(1)Y

SU(2)⊗ U(1) correspond to these (unbroken) generators

 use SU(3)/(SU(2)⊗U(1)) as an explicit example:

Σex = exp
i

f




χ4 − iχ5

χ6 − iχ7

χ4 + iχ5 χ6 + iχ7





� �

contains interactions of χ₄,₅,₆,₇ with 
W/Z/γ and each otherLΣ =

f2

4
tr(DµΣex DµΣ

†
ex) + · · ·




0
0
1





Σ0

Composite Higgs in action

Wednesday, December 4, 2013



Now for the real thing: SO(5)/SO(4)

LΣ =
f2

4
tr(DµΣDµΣ

T ) + · · ·

expand, do lots of algebra...

LΣ =
(∂µh)2

2
+

g2 f2

4
sin2

�h
f

�
W+

µ W−µ +
g2 f2

8 cos2 θ
sin2

�h
f

�
Z0
µZ

0µ

Composite Higgs in action
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Now for the real thing: SO(5)/SO(4)

LΣ =
f2

4
tr(DµΣDµΣ

T ) + · · ·

expand, do lots of algebra...

LΣ =
(∂µh)2

2
+

g2 f2

4
sin2

�h
f

�
W+

µ W−µ +
g2 f2

8 cos2 θ
sin2

�h
f

�
Z0
µZ

0µ

ASSUMING: <h>≠0 (have to justify later with V(h) )

set h → h + <h> in above, and expand 

v = f sin
�< h >

f

�
define: EW scale v < scale of 

strong dynamics f 

Composite Higgs in action
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Now for the real thing: SO(5)/SO(4)

LΣ =
f2

4
tr(DµΣDµΣ

T ) + · · ·

expand, do lots of algebra...

LΣ =
(∂µh)2

2
+

g2 f2

4
sin2

�h
f

�
W+

µ W−µ +
g2 f2

8 cos2 θ
sin2

�h
f

�
Z0
µZ

0µ

ASSUMING: <h>≠0 (have to justify later with V(h) )

set h → h + <h> in above, and expand 

v = f sin
�< h >

f

�
define: EW scale v < scale of 

strong dynamics f 

Composite Higgs in action

? ? ?
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Keep expanding:LΣ =
(∂µh)2

2
+

g2 f2

4
sin2

�h
f

�
W+

µ W−µ +
g2 f2

8 cos2 θ
sin2

�h
f

�
Z0
µZ

0µ

reshuffling things... m2
W

�
1 + a

2h

v
+ b

h2

v2
+ · · ·

�

∴ in the SO(5)/SO(4) composite Higgs model

where: ξ =
v2

f2

f2 sin2
�h
f

�
= v2 + 2 v h

�
1− ξ + h2 (1− 2ξ) + · · ·

a =

�

1− v2

f2
b = 1− 2

v2

f2,

Higgs couplings deviate from SM values

Composite Higgs in action
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a ≠ 1 : eventual bad behavior in WLWL → WLWL amplitudes 

other patterns of symmetry breaking would have different values for 
a,b, as well as more states

ex.) SO(6)/SO(5) has 5 NGBs,
                  4 ∈ H + 1 extra scalar η

many other 
possibilities

want strong coupling scale pushed to ̃ few TeV (at least)

eventual strong dynamics... 
∴ expect resonances at scale 

~f in analogy with to QCD

Composite Higgs in action

ρ’, a’, ω’, etc.

4
√
πv√

1− a
∼ 4

√
πv

f2

v2
at
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How do fermions get mass?

they mix with composite fermions ̃ baryons of the 
new strong interaction

• composite baryons are massive even without EWSB, just as proton 
would have mass even without quark masses. 

• proton interacts strongly with QCD pion ∴ composite fermions will 
interact strongly with composite higgs.

qL
qR

QRQL

h

Partial Compositeness
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How do fermions get mass?

they mix with composite fermions ̃ baryons of the 
new strong interaction

• composite baryons are massive even without EWSB, just as proton 
would have mass even without quark masses. 

• proton interacts strongly with QCD pion ∴ composite fermions will 
interact strongly with composite higgs.

• the price we pay is new states, the composite fermions..  
               new states -> new LHC signals

qL
qR

QRQL

h

Partial Compositeness
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in practice:

composite fermions mass terms for composites

composite + higgs couplings

LF = ∆LQLQR +∆RtRTL +MQQLQR +MTTLTR + YT QL Σ TR + h.c.

SM fields

Undo the mixing:

(qL h t∗R)YT sin (φL) sin (φR)yields

QL = cos (φL)QH + sin (φL) qL

QL = − sin (φL)QH + cos (φL) qL
+ similar for tR TL,R

Partial Compositeness
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in practice:

composite fermions mass terms for composites

composite + higgs couplings

LF = ∆LQLQR +∆RtRTL +MQQLQR +MTTLTR + YT QL Σ TR + h.c.

SM fields

Undo the mixing:

(qL h t∗R)YT sin (φL) sin (φR)yields

QL = cos (φL)QH + sin (φL) qL

QL = − sin (φL)QH + cos (φL) qL
+ similar for tR TL,R

different from y f QL Σu∗
R → y

(QLu∗
R)(ψ̄ψ)

Λ2

Partial Compositeness

exact form depends on how 
composites transform under G
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Recap:

Composite Higgs models are characterized by two 
scales: f and v

• Higgs couplings deviate from SM values at O(v²/f²)

• new dynamics at f, new states at O(f-4π f)
new spin-1 resonances: ρ’, a’, etc.

new spin-1/2 resonances: composite fermions

ghV V

ghV V,SM
=

�

1− v2

f2
,

ghhV V

ghhV V,SM
= 1− 2

v2

f2
,

gtt̄h
gtt̄h,SM

=

�

1− v2

f2

set by G/G’ pattern set by composite fermion rep.

i.e. for SO(5)/SO(4) “MCHM”
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study all possible Higgs production and decay process to extract ghVV, gtth

ghVV
gtth

intricate process, as different production mechanisms scale differently 
with ghVV, gtth and contribute differently to each final state

LHC signals: Higgs couplings
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different composite Higgs models → different ghVV, ghtt, possibly 
even extra Higgs decay modes from new particles

BUT, careful: H + jj is not VBF alone, H+0j is not just gg → H 
also, ΓH knows about all gffh

ex.)      gg → h → Wμ+ Wμ- ∼ ghVV gtth/ΓH
      VBF pp → h → τ+ τ- ∼ ghVV gττh/ΓH

gg→ h → τ+τ- ∼ gtth gττh/ΓH

LHC signals: Higgs couplings

Wednesday, December 4, 2013



LHC signals: Higgs couplings

κV =
ghV V

ghV V,SM
, κf =

gtt̄h
gtt̄h,SM

both LHC expts. already cast 
results in space of

roughly, ¦κV -1¦ ≲ 0.2, v ≳ 550  GeV (though caveats remain)

improvements? ¦κV -1¦ ≃ 0.1 possible... 
hard to get much better due to uncertainties (PDF/σh/vetoes)! 

Wednesday, December 4, 2013



slight mixing between W’, Z’ and W, Z, means new resonances 
produced most easily in ŝ-channel

q

q̅’

W W’

+ similar for 
Z’, Z’’, etc.

BUT:  W’,Z’ couple strongest to other  
  strong-sector states, like the 

longitudinal 
  W, Z & h (even t). Big couplings mean 

ΓW’, etc. can be big.

usual W’, Z’ LHC searches assume zero (or very small) 
W’WZ interactions... these need to be reinterpreted for 

particles w/ strong interactions with W, Z, etc. 

may look like usual W’, Z’

LHC signals: spin-1 resonances
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cleanest signal for W/Z decay products is the fully leptonic mode: 
W’ → WZ → 3ℓ + ν

leptonic modes have small BR .. combined with small production 
cross section, rate will be a problem as mW’ increases

ATLAS 13.0 fb-1 CMS 19.6 fb-1

LHC signals: spin-1 resonances

existing studies assume small W’WZ coupling!
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LHC signals: fermionic resonances

can be pair- or singly-produced

often decay to W/Z/H + t/b... 
exact modes, BR depend on the 

model

top/bottom-partners usually lightest new fermions

q

q̅ q

b T

W

q

T

T̅12 References

Figure 7: Branching fraction triangle with expected limits (left) and observed limits (right) for
the T quark mass. Every point in the triangle corresponds to a particular set of branching
fraction values subject to the constraint that all three add up to one. The branching fraction for
each mode decreases from one at the corner labeled with the decay mode to zero at the opposite
side of the triangle.

8 Conclusion
We have searched for the pair production of a heavy vector-like T quark with charge 2/3 and its
antiparticle based on events with at least one isolated lepton. Assuming that the T quark decays
exclusively into bW, tZ, and tH, we set lower limits for its mass between 687 and 782 GeV for all
possible branching fractions into these three final states. This is the first search that considers
all three final states and the limits place the most stringent constraints on the existence of such
a quark to date.
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LHC signals: fermionic resonances

stronger bounds from exotically charged new fermions

tL partner ∼
 part of larger SU(2) rep. 

containing X5/3

q̄ q′

g

g

T̄5/3

q′

q̄

g

W−

W+ b

b̄

t̄

l+ ν
l+ ν

t
T5/3

W−

W+

l+ q′

g

g

B̄

ν

q̄

g

W−

W+ b

b̄

t̄

q̄ q′ l+ ν

t

B

W+

W−

Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

(section 4). Sections 5 and 6 present our main analysis: first, we show the optimal cuts and
characterize the best observables for discovering the heavy T5/3 and B without making any
sophisticated reconstruction; then, we reconstruct the W and t candidates and pair them to
reconstruct the T5/3 invariant mass. We conclude with a critical discussion of our results.

2 A simple model for the top partners

Although the main results of our analysis will be largely independent of the specific real-
ization of the new sector, we will adopt as a working example the “two-site” description of
Ref. [23], which reproduces the low-energy regime of the 5D models of [13, 14] (see also [24]
for an alternative 4D construction). Its two building blocks are the weakly-coupled sec-
tor of the elementary fields qL = (tL, bL) and tR, and a composite sector comprising two
heavy multiplets (2, 2)2/3, (1, 1)2/3 plus the Higgs (the case with partners of the tR in a
[(1, 3)⊕ (3, 1)]2/3 can be similarly worked out):

Q = (2, 2)2/3 =

[

T T5/3

B T2/3

]

, T̃ = (1, 1)2/3 , H = (2, 2)0 =

[

φ†
0 φ+

−φ− φ0

]

. (1)

The two sectors are linearly coupled through mass mixing terms, resulting in SM and heavy
mass eigenstates that are admixtures of elementary and composite modes. The Higgs dou-
blet couples only to the composite fermions, and its Yukawa interactions to the SM and
heavy eigenstates arise only via their composite component. The Lagrangian in the elemen-
tary/composite basis is (we omit the Higgs potential and kinetic terms and we assume, for
simplicity, the same Yukawa coupling for both left and right composite chiralities):

L =q̄L #∂ qL + t̄R #∂ tR
+ Tr

{

Q̄ ( #∂ −MQ)Q
}

+ ¯̃T ( #∂ −MT̃ ) T̃ + Y∗Tr{Q̄H} T̃ + h.c

+∆L q̄L (T,B) +∆R t̄RT̃ + h.c.

(2)

3

pair-production of X5/3 
generates SSL signal

very little SM background 
→ strong limit 

limit pulls up mass of whole multiplet

mX ≳ 770  GeV
[CMS PAS B2G-12-012,     

     ATLAS-CONF-2013-051]

(helps w/ Zbb ̅ )
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about that Higgs potential...

rewrite LCH 
differently...

new f-scale dynamics impact Higgs through potential (v, m2H)At this point we turn back to the original action (42) and switch off the unphysical

gauge fields keeping only those of SU(2)L × U(1)Y . By using eq.(41) we obtain:

L =
1

2
(PT )

µν

��
ΠX

0 (q
2
) + Π0(q

2
) +

sin
2
(h/f)

4
Π1(q

2
)

�
BµBν

+

�
Π0(q

2
) +

sin
2
(h/f)

4
Π1(q

2
)

�
AaL

µ AaL
ν

+ 2 sin
2
(h/f)Π1(q

2
) Ĥ†T aLY Ĥ AaL

µ Bν

�
,

(48)

where Bµ is the hypercharge field and we defined

Ĥ ≡ 1

h
H =

1

h

�
h1 − ih2

h3 − ih4

�
. (49)

This is the effective action for the SM gauge fields in the background of Σ that we were

looking for. By expanding the form factors at momenta small compared to the mass

scale of the strong resonances, q2 � m2
ρ, one obtains an effective Lagrangian in terms of

local operators. Without loss of generality, one can always perform an SO(4) rotation

and align the Higgs vev along the h3
direction, so that (h1, h2, h3, h4

) = (0, 0, 1, 0) and
Ĥ t

= (0, 1). Hence, at order q2 one has

L = (PT )
µν

�
1

2

�
f 2

sin
2
(�h�/f)
4

��
BµBν +W 3

µW
3
ν − 2W 3

µBν

�

+

�
f 2

sin
2
(�h�/f)
4

�
W+

µ W−
ν

+
q2

2

�
Π�

0(0)W
aL
µ W aL

ν +
�
Π�

0(0) + ΠX �
0 (0)

�
BµBν

�
+ . . .

�
(50)

where Π�
denotes the first derivative of Π with respect to q2. From the above Lagrangian

we can thus identify

1

g2
= −Π�

0(0) ,
1

g�2
= −

�
Π�

0(0) + ΠX �
0 (0)

�
(51)

and

v = f sin
�h�
f

, so that ξ ≡ v2

f 2
= sin

2 �h�
f

. (52)

Notice that the formulas in eq.(51) show the contribution to the low-energy gauge

couplings from the strong dynamics only. If one adds to the effective action (42) bare

kinetic terms for the external SU(2)L × U(1)X fields, the expressions for g and g� will
be modified to

1

g2
= −Π�

0(0) +
1

g20
,

1

g�2
= −

�
Π�

0(0) + ΠX �
0 (0)

�
+

1

g�20
. (53)

22

form factors Π₀, Π₁ encapsulate strong dynamics
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about that Higgs potential...
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new f-scale dynamics impact Higgs through potential (v, m2H)At this point we turn back to the original action (42) and switch off the unphysical
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where Bµ is the hypercharge field and we defined

Ĥ ≡ 1
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H =

1

h

�
h1 − ih2

h3 − ih4
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. (49)

This is the effective action for the SM gauge fields in the background of Σ that we were

looking for. By expanding the form factors at momenta small compared to the mass

scale of the strong resonances, q2 � m2
ρ, one obtains an effective Lagrangian in terms of

local operators. Without loss of generality, one can always perform an SO(4) rotation

and align the Higgs vev along the h3
direction, so that (h1, h2, h3, h4

) = (0, 0, 1, 0) and
Ĥ t

= (0, 1). Hence, at order q2 one has
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where Π�
denotes the first derivative of Π with respect to q2. From the above Lagrangian

we can thus identify

1

g2
= −Π�

0(0) ,
1
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= −
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(51)

and
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, so that ξ ≡ v2
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. (52)

Notice that the formulas in eq.(51) show the contribution to the low-energy gauge

couplings from the strong dynamics only. If one adds to the effective action (42) bare

kinetic terms for the external SU(2)L × U(1)X fields, the expressions for g and g� will
be modified to

1
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= −Π�

0(0) +
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g20
,
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Figure 7: 1-loop contribution of the SM gauge fields to the Higgs potential. A grey blob

represents the strong dynamics encoded by the form factor Π1.

section 3.3, as we are now ready to derive the Coleman-Weinberg potential for the

composite Higgs.

We will concentrate on the contribution from the SU(2)L gauge fields, neglecting the

smaller correction from hypercharge. The contribution from fermions will be derived

in section 3.4. The 1-loop Coleman-Weinberg potential resums the class of diagrams

in Fig. 7. From the effective action (48), after the addition of the gauge-fixing term

LGF = − 1

2g2ζ

�
∂µ

A
aL
µ

�2
, (58)

it is easy to derive the Feynman rules for the gauge propagator and vertex:

Gµν =
i
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2)
(PT )µν − ζ
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q2
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iΓµν =
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2
)

4
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2
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where (PL)µν = qµqν/q
2
is the longitudinal projector. Resumming the series of 1-loop

diagrams of Fig. 7 then leads to the potential:

V (h) =
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where Q2
= −q2 is the Euclidean momentum. The factor 9 originates from the sum

over three Lorentz polarizations and three SU(2)L flavors.

Let us argue on the behavior of the form factors at large Euclidean momentum and

on the convergence of the integral. We have seen that Π0 is related to the product of

two SO(4) currents

�Ja
µ(q)J

a
ν (−q)� = Π0(q

2
)(PT )µν (60)

where, we recall, the notation �O1O2� denotes the vacuum expectation of the time-

ordered product of the operators O1 and O2. The form factor Π1, on the other hand,

24

is given by the difference (see eq.(44))
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µ
(q)Ja

ν (−q)� − �J â

µ
(q)J â

ν (−q)� = −1

2
Π1(q

2)(PT )µν . (61)

At energies much above the scale of symmetry breaking, the SO(5) invariance is re-
stored, and the difference of two-point functions along broken and unbroken directions
is expected to vanish. In this sense Π1 is an order parameter : it is sensitive to the
symmetry-breaking IR dynamics, and it vanishes at large momenta. If Π1 goes to zero
fast enough, the integral in eq.(59) will be convergent and the Higgs potential finite.
This agrees with the intuition that if the Higgs is a bound state of the strong dynam-
ics, then its mass cannot receive corrections larger than the compositeness scale. To
support this intuition with a more rigorous argument, let us consider the Operator
Product Expansion (OPE) of two currents.

Following Wilson, the time-ordered product of two operators A(x1), B(x2) can be
expressed as an infinite sum of local operators of increasing dimension multiplied by
coefficients that depend on the separation (x1 − x2):

T {A(x)B(0)} =
�

n

C
(n)
12 (x)On(0) . (62)

The equality is at the level of operators, thus implying the equality of any Green
function made of them. The sum extends over all operators with the same global
symmetries of the product AB. In particular, the OPE of the product of two conserved
currents Jµ reads, in momentum space:

i

�
d
4
x e

iq·x
T {Jµ(x)Jν(0)} = (q2ηµν − qµqν)

�

n

C
(n)(q2)On(0) . (63)

By dimensional analysis, the larger is the dimension of the operator On, the more
suppressed is its coefficient at large Euclidean momenta Q2 = −q2:

C
(n)(Q2) ∼ 1

Q[On]
for Q large. (64)

The convergence of the integral in the Higgs potential then requires that the first
operator to contribute to the difference of the product of SO(4) and SO(5)/SO(4)
currents must have dimension 5 or greater:

�Ja

µ
(q)Ja

ν (−q)� − �J â

µ
(q)J â

ν (−q)� = (q2ηµν − qµqν)
�
C

(5)(q2)�O5�+ . . .
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(65)

so that

Π1(Q
2) ∼ 1

Qn−2
n ≥ 5 for Q2 → ∞ . (66)

This makes use of the fact that Π0 grows at least as Q2 at large momenta, see eq.(51).
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about that Higgs potential...

rewrite LCH 
differently...

new f-scale dynamics impact Higgs through potential (v, m2H)At this point we turn back to the original action (42) and switch off the unphysical

gauge fields keeping only those of SU(2)L × U(1)Y . By using eq.(41) we obtain:

L =
1

2
(PT )

µν

��
ΠX

0 (q
2
) + Π0(q

2
) +

sin
2
(h/f)

4
Π1(q

2
)

�
BµBν

+

�
Π0(q

2
) +

sin
2
(h/f)

4
Π1(q

2
)

�
AaL

µ AaL
ν

+ 2 sin
2
(h/f)Π1(q

2
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where Bµ is the hypercharge field and we defined

Ĥ ≡ 1
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. (49)

This is the effective action for the SM gauge fields in the background of Σ that we were

looking for. By expanding the form factors at momenta small compared to the mass

scale of the strong resonances, q2 � m2
ρ, one obtains an effective Lagrangian in terms of

local operators. Without loss of generality, one can always perform an SO(4) rotation

and align the Higgs vev along the h3
direction, so that (h1, h2, h3, h4

) = (0, 0, 1, 0) and
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= (0, 1). Hence, at order q2 one has
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where Π�
denotes the first derivative of Π with respect to q2. From the above Lagrangian

we can thus identify
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g2
= −Π�

0(0) ,
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Notice that the formulas in eq.(51) show the contribution to the low-energy gauge

couplings from the strong dynamics only. If one adds to the effective action (42) bare

kinetic terms for the external SU(2)L × U(1)X fields, the expressions for g and g� will
be modified to
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Figure 7: 1-loop contribution of the SM gauge fields to the Higgs potential. A grey blob

represents the strong dynamics encoded by the form factor Π1.

section 3.3, as we are now ready to derive the Coleman-Weinberg potential for the

composite Higgs.

We will concentrate on the contribution from the SU(2)L gauge fields, neglecting the

smaller correction from hypercharge. The contribution from fermions will be derived

in section 3.4. The 1-loop Coleman-Weinberg potential resums the class of diagrams

in Fig. 7. From the effective action (48), after the addition of the gauge-fixing term

LGF = − 1

2g2ζ

�
∂µ

A
aL
µ

�2
, (58)

it is easy to derive the Feynman rules for the gauge propagator and vertex:

Gµν =
i
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(PT )µν − ζ
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(PL)µν

iΓµν =
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)

4
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where (PL)µν = qµqν/q
2
is the longitudinal projector. Resumming the series of 1-loop

diagrams of Fig. 7 then leads to the potential:
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where Q2
= −q2 is the Euclidean momentum. The factor 9 originates from the sum

over three Lorentz polarizations and three SU(2)L flavors.

Let us argue on the behavior of the form factors at large Euclidean momentum and

on the convergence of the integral. We have seen that Π0 is related to the product of

two SO(4) currents

�Ja
µ(q)J

a
ν (−q)� = Π0(q

2
)(PT )µν (60)

where, we recall, the notation �O1O2� denotes the vacuum expectation of the time-

ordered product of the operators O1 and O2. The form factor Π1, on the other hand,
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is given by the difference (see eq.(44))
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µ
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2
Π1(q

2)(PT )µν . (61)

At energies much above the scale of symmetry breaking, the SO(5) invariance is re-
stored, and the difference of two-point functions along broken and unbroken directions
is expected to vanish. In this sense Π1 is an order parameter : it is sensitive to the
symmetry-breaking IR dynamics, and it vanishes at large momenta. If Π1 goes to zero
fast enough, the integral in eq.(59) will be convergent and the Higgs potential finite.
This agrees with the intuition that if the Higgs is a bound state of the strong dynam-
ics, then its mass cannot receive corrections larger than the compositeness scale. To
support this intuition with a more rigorous argument, let us consider the Operator
Product Expansion (OPE) of two currents.

Following Wilson, the time-ordered product of two operators A(x1), B(x2) can be
expressed as an infinite sum of local operators of increasing dimension multiplied by
coefficients that depend on the separation (x1 − x2):

T {A(x)B(0)} =
�

n

C
(n)
12 (x)On(0) . (62)

The equality is at the level of operators, thus implying the equality of any Green
function made of them. The sum extends over all operators with the same global
symmetries of the product AB. In particular, the OPE of the product of two conserved
currents Jµ reads, in momentum space:
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�
d
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T {Jµ(x)Jν(0)} = (q2ηµν − qµqν)
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C
(n)(q2)On(0) . (63)

By dimensional analysis, the larger is the dimension of the operator On, the more
suppressed is its coefficient at large Euclidean momenta Q2 = −q2:

C
(n)(Q2) ∼ 1

Q[On]
for Q large. (64)

The convergence of the integral in the Higgs potential then requires that the first
operator to contribute to the difference of the product of SO(4) and SO(5)/SO(4)
currents must have dimension 5 or greater:

�Ja

µ
(q)Ja

ν (−q)� − �J â

µ
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ν (−q)� = (q2ηµν − qµqν)
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so that

Π1(Q
2) ∼ 1

Qn−2
n ≥ 5 for Q2 → ∞ . (66)

This makes use of the fact that Π0 grows at least as Q2 at large momenta, see eq.(51).
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new f-scale dynamics impact Higgs through potential (v, m2H)At this point we turn back to the original action (42) and switch off the unphysical

gauge fields keeping only those of SU(2)L × U(1)Y . By using eq.(41) we obtain:
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where Bµ is the hypercharge field and we defined

Ĥ ≡ 1
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h1 − ih2
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. (49)

This is the effective action for the SM gauge fields in the background of Σ that we were

looking for. By expanding the form factors at momenta small compared to the mass

scale of the strong resonances, q2 � m2
ρ, one obtains an effective Lagrangian in terms of

local operators. Without loss of generality, one can always perform an SO(4) rotation

and align the Higgs vev along the h3
direction, so that (h1, h2, h3, h4

) = (0, 0, 1, 0) and
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= (0, 1). Hence, at order q2 one has
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where Π�
denotes the first derivative of Π with respect to q2. From the above Lagrangian

we can thus identify
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Notice that the formulas in eq.(51) show the contribution to the low-energy gauge

couplings from the strong dynamics only. If one adds to the effective action (42) bare

kinetic terms for the external SU(2)L × U(1)X fields, the expressions for g and g� will
be modified to
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Figure 7: 1-loop contribution of the SM gauge fields to the Higgs potential. A grey blob

represents the strong dynamics encoded by the form factor Π1.

section 3.3, as we are now ready to derive the Coleman-Weinberg potential for the

composite Higgs.

We will concentrate on the contribution from the SU(2)L gauge fields, neglecting the

smaller correction from hypercharge. The contribution from fermions will be derived

in section 3.4. The 1-loop Coleman-Weinberg potential resums the class of diagrams

in Fig. 7. From the effective action (48), after the addition of the gauge-fixing term

LGF = − 1

2g2ζ

�
∂µ

A
aL
µ

�2
, (58)

it is easy to derive the Feynman rules for the gauge propagator and vertex:
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where (PL)µν = qµqν/q
2
is the longitudinal projector. Resumming the series of 1-loop

diagrams of Fig. 7 then leads to the potential:
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where Q2
= −q2 is the Euclidean momentum. The factor 9 originates from the sum

over three Lorentz polarizations and three SU(2)L flavors.

Let us argue on the behavior of the form factors at large Euclidean momentum and

on the convergence of the integral. We have seen that Π0 is related to the product of

two SO(4) currents

�Ja
µ(q)J

a
ν (−q)� = Π0(q

2
)(PT )µν (60)

where, we recall, the notation �O1O2� denotes the vacuum expectation of the time-

ordered product of the operators O1 and O2. The form factor Π1, on the other hand,
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is given by the difference (see eq.(44))
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µ
(q)J â
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At energies much above the scale of symmetry breaking, the SO(5) invariance is re-
stored, and the difference of two-point functions along broken and unbroken directions
is expected to vanish. In this sense Π1 is an order parameter : it is sensitive to the
symmetry-breaking IR dynamics, and it vanishes at large momenta. If Π1 goes to zero
fast enough, the integral in eq.(59) will be convergent and the Higgs potential finite.
This agrees with the intuition that if the Higgs is a bound state of the strong dynam-
ics, then its mass cannot receive corrections larger than the compositeness scale. To
support this intuition with a more rigorous argument, let us consider the Operator
Product Expansion (OPE) of two currents.

Following Wilson, the time-ordered product of two operators A(x1), B(x2) can be
expressed as an infinite sum of local operators of increasing dimension multiplied by
coefficients that depend on the separation (x1 − x2):

T {A(x)B(0)} =
�

n

C
(n)
12 (x)On(0) . (62)

The equality is at the level of operators, thus implying the equality of any Green
function made of them. The sum extends over all operators with the same global
symmetries of the product AB. In particular, the OPE of the product of two conserved
currents Jµ reads, in momentum space:

i

�
d
4
x e

iq·x
T {Jµ(x)Jν(0)} = (q2ηµν − qµqν)

�

n

C
(n)(q2)On(0) . (63)

By dimensional analysis, the larger is the dimension of the operator On, the more
suppressed is its coefficient at large Euclidean momenta Q2 = −q2:

C
(n)(Q2) ∼ 1

Q[On]
for Q large. (64)

The convergence of the integral in the Higgs potential then requires that the first
operator to contribute to the difference of the product of SO(4) and SO(5)/SO(4)
currents must have dimension 5 or greater:
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so that

Π1(Q
2) ∼ 1

Qn−2
n ≥ 5 for Q2 → ∞ . (66)

This makes use of the fact that Π0 grows at least as Q2 at large momenta, see eq.(51).
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similarly, in 
fermion sector

latter give the spectrum of the fermionic resonances of the strong sector. Using the

expression of the gamma matrices Γi
of SO(5) given in the Appendix one easily obtains:

ΓiΣi =

�
1 cos(h/f) σ̂ sin(h/f)
σ̂†

sin(h/f) −1 cos(h/f)

�
,

σ̂ ≡ σâ hâ/h
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At this point we keep only the top quark multiplets qL = (tL, bL) and tR as physical,

dynamical fields, and set to zero all the other fields. The effect of the other elementary

fermions in the Higgs potential is negligible due to their small couplings to the strong

dynamics at low energy. We thus obtain the effective action for qL and tR we were

looking for:
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Here Ĥc
= iσ2Ĥ and Ĥ has been defined in eq.(49). In particular, the top quark mass

can be extracted from the Yukawa term between tL and tR by taking the low-energy

limit p � 0:
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By expanding eq.(119) around the Higgs vev one also immediately obtains the expres-

sion of the parameter c defined in eq.(16):

c =
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From the effective action one easily derives the 1-loop Coleman-Weinberg potential:
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The first term in the integral of eq.(122) is the contribution of bL, while the second is

due to the top quark (tL and tR). The potential can also be conveniently rewritten (up

to terms that do not depend on the Higgs field) as
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Figure 7: 1-loop contribution of the SM gauge fields to the Higgs potential. A grey blob

represents the strong dynamics encoded by the form factor Π1.

section 3.3, as we are now ready to derive the Coleman-Weinberg potential for the

composite Higgs.

We will concentrate on the contribution from the SU(2)L gauge fields, neglecting the

smaller correction from hypercharge. The contribution from fermions will be derived

in section 3.4. The 1-loop Coleman-Weinberg potential resums the class of diagrams

in Fig. 7. From the effective action (48), after the addition of the gauge-fixing term

LGF = − 1
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it is easy to derive the Feynman rules for the gauge propagator and vertex:
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where (PL)µν = qµqν/q
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is the longitudinal projector. Resumming the series of 1-loop

diagrams of Fig. 7 then leads to the potential:
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where Q2
= −q2 is the Euclidean momentum. The factor 9 originates from the sum

over three Lorentz polarizations and three SU(2)L flavors.

Let us argue on the behavior of the form factors at large Euclidean momentum and

on the convergence of the integral. We have seen that Π0 is related to the product of

two SO(4) currents

�Ja
µ(q)J

a
ν (−q)� = Π0(q

2
)(PT )µν (60)

where, we recall, the notation �O1O2� denotes the vacuum expectation of the time-

ordered product of the operators O1 and O2. The form factor Π1, on the other hand,
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Figure 12: 1-loop contribution of the SM top and bottom quark to the Higgs potential.

Upper row: diagrams where the same elementary field, either qL = (tL, bL) or tR, circulates
in the loop with a propagator i/(�pΠ0). A grey blob denotes the form factor �pΠ1. Lower row:

diagrams where both tL and tR circulate in the loop with a Higgs-dependent propagator (see

text). In this case a grey blob denotes the form factor Mu
1 .

where this time the first two terms in the integral can be thought of as due to the

resummation of 1-loop diagrams where only qL or tR are exchanged, see Fig. 12 (upper

row). The last term, instead, comes from resumming the diagrams where both tL and

tR circulate in the loop with a Higgs-dependent propagator, respectively

i

�p (Πq
0 + Πq

1 cos(h/f))
, and

i

�p (Πu
0 − Πu

1 cos(h/f))
,

see Fig. 12 (lower row). As for the case of the gauge fields, the finiteness of the integral

is guaranteed by the convergence of the form factors Mu
1 and Πu,q

1 at large Euclidean

momenta. Provided these decrease fast enough, the potential can be reasonably well

approximated by expanding the logarithms at first order. This gives:

V (h) � α cos
h

f
− β sin

2 h

f
, (125)

where the coefficients α and β are defined in terms of integrals of the form factors.

Including the contribution of the gauge potential (59) to β, one has:
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�
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about that Higgs potential...

without really knowing Πᵢ, etc. model-builders resort to 

large-Nc

“AdS/CFT”-inspired extra-dimensions

NDA

vector-meson-dominance

important since Πᵢ modeling ties new resonances to V(h) and 
thereby to EWSB and m2h

We see that even though the gauge contribution to β is negative, the EWSB can
still be triggered by the top contribution if α ≤ 2β. In this case the potential has a
minimum at

ξ = sin2 �h�
f

= 1−
�

α

2β

�2

. (127)

This shows immediately that small values of ξ require a fine tuning between α and
β. In fact, this is a general feature of composite Higgs models: the misalignment of
the vacuum comes from the interplay of different terms in the potential (specifically,
sin2 and cos in eq.(125)), each of which is a periodic function of θ = h/f . One thus
naturally expects large values of the angle θ at the minimum (ξ ∼ 1), or no symmetry
breaking at all (ξ = 0). Small values of θ are unnatural and can arise only through a
fine-tuned cancellation among different terms of the potential. 16 Therefore, the value
of ξ gives a rough estimate of the tuning of the theory. In particular, models where
ξ ∼ 0.1 is required to pass the LEP precision tests are tuned at the level of 10%.

As a final exercise, it is instructive to derive the expression of the physical Higgs
mass that follows from eq.(125). Taking the second derivative of the potential at its
minimum one has m2

h = 2βξ/f 2. It is convenient to define

F (Q2) =
(Mu

1 )
2

(Πq
0 + Πq

1)(Π
u
0 − Πu

1)
, , (128)

so that (neglecting for simplicity the gauge contribution)

β =
Nc

8π2
F (0)

�
dQ2 F (Q2)

F (0)
≡ Nc

8π2
F (0)m2

∗ , (129)

where the last equality defines m∗. This is the scale at which the top loop is cut off,
and is naturally expected to be of the order of the lightest fermionic resonance of the
strong sector. Using the fact that mt = ξ

�
F (0), see eq.(120), one finally obtains

(yt = mt/v):

m2
h = 2Nc

y2t
8π2

m2
∗ ξ . (130)

This result could have been guessed simply by naive dimensional analysis: the Higgs
mass is one loop suppressed compared to the scale of the heavy resonances m∗, and
the SM coupling responsible for the explicit breaking of the Goldstone symmetry is
the top Yukawa coupling in this case. A further suppressing factor ξ comes from the

16
An interesting exception is when one term in the potential starts at order h4

(for example a sin
4

term [34]), thus contributing only to the quartic coupling and not to the Higgs mass term. If the

coefficient of such term is slightly larger than that of the other terms in the potential, then a small

value of θ naturally follows at the minimum. This way of getting naturally a large gap between f and

v is analogous to the mechanism at work in Little Higgs theories, where the large quartic follows from

collective breaking (see [2] and references therein). Unfortunately, no fully natural mechanism have

been found so far (other than collective breaking), to make the coefficient of the h4
term parametrically

larger than that of the remaining terms in the potential.

45

ξ =
v2

f2
, m∗ = κmT,

modeling
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term parametrically

larger than that of the remaining terms in the potential.

45

ξ =
v2

f2
, m∗ = κmT,

modeling

but are these assumptions any good? generic?

help from the lattice!
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about that Higgs potential...

big questions for composite Higgs after 20 fb-1 LHC data: 

• can we get v, mh ≪ mW’, mT in CH setup?

• what are the properties of those theories?
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about that Higgs potential...

big questions for composite Higgs after 20 fb-1 LHC data: 

• can we get v, mh ≪ mW’, mT in CH setup?

• what are the properties of those theories?

lattice input in these theories could really help: 

spectrum (pNGB, spin-1, spin-1/2 resonances),
 Lχ/OPE coefficients, Πi(q2) etc. = shape of potential

what happens with different χSB pattern?

know from SU(N)2/SU(N) lattice studies that different NF, 
representation, etc. lead to behavior different from vanilla QCD. 
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conclusions

composite Higgs = Higgs as a pNGB, formed 
from new strong dynamics at f

gauge and Yukawa interactions generate nontrivial V(h) and 
lead to EWSB. tuning of different contributions to get v ≪ f

O(v2/f2) Higgs coupling deviations, new heavy resonances
(spin-1, fermions) in spectra, all targets for LHC searches

resonance ↔ Higgs interplay requires understanding/
modeling strong dynamics. 

lattice insight needed
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new composite sector & Dark Matter:

• lightest `techni’baryon can be 
  stable by analog of U(1)B

• an initial matter/anti-matter asymmetry gets shared among 
baryons, leptons, `techni’baryons via sphalerons

• can get observed ΩDM/ ΩB easily for ̃ TeV scale DM
must be electrically neutral, EW singlets to avoid direct detection

Then leading operators are charge radius and polarizability:

(Chivukula, Barr, Fahri, Nussinov)

B∗B vµ ∂νFµν

Λ2
TC

B∗B FµνFµν

Λ3
TC

ex.) lattice input?,

other directions
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